Ringkasan Top 1: Satu keping uang logam dilempar 100 kali. Tentukan frekuensi harapan .Top 1: Satu keping uang logam dilempar 100 kali.tentukan frekuensi harapan Pengarang: Peringkat106Ringkasan:. 1. Berikut ini adalah persegi panjang bangun disamping adalah a. 10 b. 20 C. 25 d. 35 .
1207/2018 6:48 Aljabar Linear Elementer 15 Maka hasil kali A dan B adalah : Misalkan A, B, C adalah matriks berukuran sama dan , merupakan unsur bilangan Riil, Maka operasi matriks memenuhi sifat berikut : 1. dan Tentukan (untuk no 1 - 4) matriks hasil operasi berikut ini : 1. AB 2. 3CA 3. (AB)C 4. (4B)C + 2C 11 21 03 A 20 14 B 513 241 C
13 Jumlah dari dua angka adalah 30. Jika 5 kali angka pertama dikurangi dua kali angka kedua adalah -8. Tentukan kedua angka tersebut! Persamaan Linier 97 . 14. Di sebuah toko buku, Irfan membeli 4 buah buku dan 3 pensil dengan harga Rp.9.750 dan Tia membeli 2 buku dan satu pensil dengan harga Rp.4.250.
Videosolusi dari Tanya untuk jawab Maths - 11} | ALJABAR . Kelas Live; Tanya Gratis! Untuk Murid; Untuk Orangtua; Ngajar di CoLearn; Paket Belajar; Masuk. Tanya; 11 SMA; Matematika; ALJABAR; Tentukan hasil kali dari kedua matriks berikut. a. (-9 -1 0 3 2 -5)(-1 2 2 0 4 6) b. (2 -1 -5)(1 6 -2) Operasi Pada Matriks; Matriks; ALJABAR
a Tentukan matriks dari T berkenaan dengan B b. Tentukan matriks dari T berkenaan dengan B' IF/2011 66 ALJABAR LINEAR DAN MATRIKS 6 NILAI DAN VEKTOR EIGEN JUMLAH PERTEMUAN : 2 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS : 1. Mengetahui definisi nilai dan vektor eigen 2. Menghitung nilai eigen 3. Menentukan basis, rank dan nullitas dari ruang eigen 4.
2 menentukan matriks sebagai hasil operasi dua buah matriks; 3. menentukan jenis-jenis matriks dari matriks yang diberikan. Adapun susunan materi dalam modul ini terbagi menjadi dua kegiatan belajar sebagai berikut. Kegiatan Belajar 1: Pengertian dan notasi matriks, ordo suatu matriks, bentuk umum suatu matriks, kesamaan matriks,
Determinandari matriks A, dinotasikan sebagai det(A), adalah jumlah dari semua hasil kali elementer bertanda pada matriks A. Mengacu pada Tabel 2, jika seluruh hasil kali elemen bertanda pada kolom paling kanan dijumlahkan, maka diperoleh determinan matriks A 3. Lebih jelasnya: det( A 3) =a a a 11 22 33 +a 12 a a 23 31 +a a a 13 21 32 −a a a
Hasilkali silang hanya dapat diterapkan pada ruang (dimensi 3) Untuk mendapatkan rumus diatas, lakukan langkah-langkah sebagai berikut. Bentuk matriks 2 baris 3 kolom. Baris pertama terdiri dari komponen vektor u. Sedangkan baris kedua berasal dari vektor v. 2. Untuk menghitung komponen pertama, hilangkan kolom pertama dari matriks dan hitung
sftxi5. Kelas 11 SMAMatriksOperasi pada MatriksOperasi pada MatriksMatriksALJABARMatematikaRekomendasi video solusi lainnya0154Hasil dari A^2-2A untuk A 2 -1 3 0 adalah ..0313Jika bilangan real a, b, dan c memenuhi persamaan a1 0 1...0208-3 5 2 0 1 4-3 4 2 0 0 5+1 -5 2 3 -6 0=....0155Diketahui -2 1 = A. Hasil kali semua elemen pada diagon...Teks videojika kalian menemukan soal seperti ini maka konsep penyelesaiannya dengan menggunakan konsep perkalian matriks di mana kalian dapat lihat di sini 31 untuk menjawab pertanyaan a 312 - 4 kita kalikan dengan 4 min 3 Di mana Yang ini adalah ordo? 2 * 2 dan ini adalah ordo 2 * 1 di mana baris dan kolom asalkan ini ya sama kita lihat maka akan menghasilkan ordo 2 * 1 atau dapat dikalikan hasil akhirnya akan menjadi ordo 2 * 1 Seperti ini cara mengalikan nya dari kita cari baris pertama kolom pertama kita kalikan baris pertama dengan kolom pertama 3 x dengan 41 x 3 x 4 + dengan 1 x min 3 Seperti ini cara perkalian matriks Kemudian untuk mencari baris kedua kolom pertama berarti kita kalikan baris kedua saya berwarna biru baris kedua dengan kolom pertama dari 2 dikali 4 ditambah dengan min 4 dikali dengan min 3 seperti ini berarti hasil akhirnya adalah 3 * 4 itu 12 kemudian dikurangi 3 kemudian 8 ditambah dengan min 4 X min 3 yaitu 12 Hasil akhirnya 9 di bawahnya 20 seperti ini berarti ini hasilnya Kemudian untuk menjawab pertanyaan B kita kalikan dulu ini matriks ordo 2 * 1 dengan matriks ordo 1 * 2. Asalkan ini ya sama berarti menghasilkan matriks ordo 2 * 2 berarti kita kalikan nanti hasilnya adalah matriks ordo 2 * 2, sedangkan di depan masih tersisa angka 2 berarti nanti hasilnya seperti ini caranya adalah kita kalikan baris pertama dengan kolom pertama berarti 5 kita kalikan 6 hasilnya adalah minus 30 Kemudian untuk mencari baris pertama kolom kedua berarti kita kalikan 5 dengan 9 hasilnya adalah 45 berikutnya untuk mencari baris kedua berarti kita kalikan baris kedua dengan kolom pertama 7 x min 6 yaitu 42 dan juga 7 Kali dengan untuk mencari baris kedua kolom kedua berarti 7 * 9 yaitu 63 kemudian kita kalikan skalar berarti 2 x min 32 X min 422 * 45 dan 2 * 63 hasilnya adalah 2 x min 30 adalah Min 62 X 45 yaitu 92 X min 41 - 84 dan 2 * 63 yaitu 126 jadinya hasil Akhirnya sampai jumpa di pertanyaan berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
PembahasanSyarat agar dua buah matriks dapat dikalikan adalah matriks pertama harus memiliki jumlah kolom yang sama dengan jumlah baris pada matriks kedua. Ordo matriks hasil perkalian dua buah matriks adalah jumlah baris matriks pertama dikali jumlah kolom matriks kedua. Ordo matriks pertama pada soal ini adalah dan ordo matriks kedua adalah , jadi kedua matriks pada soal ini tidak bisa ditentukan agar dua buah matriks dapat dikalikan adalah matriks pertama harus memiliki jumlah kolom yang sama dengan jumlah baris pada matriks kedua. Ordo matriks hasil perkalian dua buah matriks adalah jumlah baris matriks pertama dikali jumlah kolom matriks kedua. Ordo matriks pertama pada soal ini adalah dan ordo matriks kedua adalah , jadi kedua matriks pada soal ini tidak bisa ditentukan hasilnya.
Dalam operasi matriks kita mengenal adanya operasi perkalian suatu matriks. dari operasi perkalian ini tentunya kita akan memperoleh hasil dalam bentuk matriks juga. misalnya ada matriks A yang berordo 2 x 2 dikalikan dengan matriks B yang berordo 2 x 2 juga maka akan menghasilkan matriks C yang juga berordo 2 x 2. Jika seandainya matriks hasil sudah diketahui, dan kita mencari salah satu dari matriks pengali katakanlah matriks A yang belum diketahui. maka untuk menyelesaikannya ada dua cara yang bisa kita gunakan yaitu Dengan membuat persamaan matriks tersebut ke dalam bentuk persamaan Linear kemudian menyelesaikan dengan metode elemenasi atau substitusi. Dengan menggunakan invers matriks Pada pembahasan kali ini kita hanya fokus mencari suatu matriks dengan cara yang pertama saja. Untuk lebih jelasnya, kita langsung saja bahas soal – soal berikut. Soal – soal di bawah saya ambil dari soal Seleksi Perguruan Tinggi Negeri. Soal 1 Jika MN matriks satuan dengan $latex N=\begin{pmatrix}2 & 4\\ 1& 6\end{pmatrix}$ maka Tentukanlah matriks M . Soal UMPTN 1992 Rayon B Jawab dalam soal, hasil dari perkalian dua matriks tersebut adalah matriks satuan atau matriks identitas. berarti elemen dari matriks MN adalah $latex MN=\begin{pmatrix}1&0\\0&1\end{pmatrix}$ kemudian kita misalkan matriks M komponennya adalah $latex M=\begin{pmatrix}a&b\\c&d\end{pmatrix}$ maka perkalian dari matriks M dan N dapat ditulis sebagai berikut $latex \begin{pmatrix}a&b\\c&d\end{pmatrix}\begin{pmatrix}2&4\\1&6\end{pmatrix}=\begin{pmatrix}1&0\\0&1\end{pmatrix}$ dalam menyelesaikan bentuk ini, teman – teman harus mengingat cara mengalikan dua buah matriks, yaitu baris pada matriks pertama kita kalikan dengan kolom pada baris kedua, sehingga perkalian matriks diatas menghasilkan $latex \begin{pmatrix}2a+b&4a+6b\\2c+d&4c+6d\end{pmatrix}=\begin{pmatrix}1&0\\0&1\end{pmatrix}$ selanjutnya elemen yang bersesuain kita samakan, sehingga kita mendapatkan empat buah persamaan yaitu 2a + b = 1 ………………. Persamaan 1 4a + 6b = 0 ……………… persamaan 2 2c + d = 1 …………………. Persamaan 3 4c + 6d = 0 ……………….. Persamaan 4 untuk mencari nilai a, b , c, dan d ini kita elemenasi persamaan 1 dan persamaan 2, sehingga didapat nilai b ini kemudian kita substitusi ke persamaan 1 atau persamaan 2 sehingga kita mendapatkan nilai a. $latex a=\frac{3}{4}$ selanjutnya kita akan mengelemenasi persamaan 3 dan 4, sehingga hasil elemenasinya bisa kita lihat sebagai berikut kemudian nilai d ini kita substitusi kita substitusikan ke persamaan 3 atau persamaan 4. sehingga kita mendapatkan nilai c. $latex c=\frac{-1}{8}$ sehingga matriks M kita dapatkan hasil $latex M=\begin{pmatrix}\frac{3}{4}&\frac{-1}{2}\\\frac{-1}{8}&\frac{1}{4}\end{pmatrix}$ Soal 2 Matriks X yang memenuhi persamaan $latex \begin{pmatrix}2&7\\5&3\end{pmatrix}X=\begin{pmatrix}-3&8\\7&-9\end{pmatrix}$ UMPTN 1992 Jawab Pertama, kita misalkan matriks X adalah $latex X=\begin{pmatrix}a&b\\c&d\end{pmatrix}$ kemudian kedua matriks ini kita kalikan, sehingga $latex \begin{pmatrix}2&7\\5&3\end{pmatrix}\begin{pmatrix}a&b\\c&d\end{pmatrix}=\begin{pmatrix}-3&8\\7&-9\end{pmatrix}$ selanjutnya akan menjadi $latex \begin{pmatrix}2a+7c&2b+7d\\5a+3c&5b+3d\end{pmatrix}=\begin{pmatrix}-3&8\\7&-9\end{pmatrix}$ dari bentuk terakhir ini kita memperoleh empat buah persamaan, yaitu 2a + 7c = -3 ………………….pers 1 2b + 7d = 8 ………………….pers 2 5a + 3c = 7 …………………. pers 3 5b + 3d = -9 …………………. pers 4 kemudian pers 1 dan pers 3 kita elemenasi, nilai c ini kita substitusikan ke persamaan 1 atau 3, sehingga di dapat nilai a = 2. selanjutnya persamaan 2 dan persamaan 4 kita elemenasi, sehingga hasil elemenasinya adalah sebagai berikut nilai d ini kita substitusi ke persamaan 2 atau persamaa 4, sehingga kita mendapatkan nilai b = -3. Dengan demikian matriks X yang memenuhi adalah $latex X=\begin{pmatrix}a&b\\c&d\end{pmatrix}=\begin{pmatrix}2&-3\\-1&2\end{pmatrix}$ Demikian pembahasan tentang mencari atau menentukan matriks dari hasil kali matriks yang sudah diketahui. semoga membantu.